物理所解析金属钠和金属锂空气稳定性差异本质

首页 > 滚动新闻 > > 正文

日期:2023-05-30 15:24:32    来源:物理研究所    


(资料图片)

金属锂、金属钠等活性碱金属因具有较高比容量在高能量密度电池领域具有广阔的应用前景。实现金属锂/钠大规模可持续制造、运输和储存的关键在于其空气稳定性。然而,一个有趣且常见的现象是金属锂在干燥空气中稳定,而金属钠不稳定。对此现象的通常解释是钠比锂更容易失去电子,但是,具体的化学钝化机制尚不清楚。对该现象的理解有助于对初始电极固体电解质界面(SEI)、金属-气体电池中的气体交叉反应等复杂效应的正确解释,且能够对活性金属的可持续防腐提供行之有效的策略。

为解析锂和钠金属的空气稳定性差异,中国科学院物理研究所研究团队联合燕山大学和德国马普所等团队进行了多种原位显微技术和非原位表面分析技术表征,并结合热力学和动力学计算,从宏观到微观尺度对气固反应产物进行实时原位观察研究,全方面剖析锂/钠与环境气体之间腐蚀反应的物理化学过程。 研究发现,锂和钠在干燥空气中的稳定性差异源于它们表面上致密的Li2O和不均匀的Na2O/Na2O2层,这是由氧化反应中不同的热力学和动力学过程引起的。研究认为,该化学稳定性的差异可能更多来源于界面而非体相,纠正了以往普遍认知。该工作还首次在钠-干燥空气系统中观察到Kirkendall效应和Ostwald Ripening现象。考虑到Li-O2和Na-CO2体系是扩散控制反应,而Na-O2和Li-CO2体系是界面控制反应,通过CO2预钝化方法构建碳酸盐界面可进一步限制其动力学反应,实现金属钠在干燥空气中耐腐蚀性的大幅度提升。

单纯的碱金属-环境气体化学反应常常被忽视,该研究利用环境透射电子显微镜内搭建的固态电池原位生长了纯净的金属锂/钠,因此可以真实反映化学反应过程,确保观察的可靠性。关于碱金属界面的新理解也提升了电池碱金属负极利用的安全性和可持续性。研究中对氧化物、过氧化物、碳酸盐的详细分析(形貌特征、结晶性、扩散特性等)有助于了解实际电池系统中SEI的生长过程以及孔隙率,以实现可控的锂和钠界面化学,为实现高度可逆金属气体电池的保护或催化剂设计提供了新思路。

相关研究成果发表在《美国化学学会志》(Journal of the American Chemical Society)上。上述研究工作得到国家重点研发计划,国家自然科学基金,中国科学院青年创新促进会和河北省自然科学基金的支持。

论文链接

图1 在干燥空气中对金属锂/钠的微米级别界面表征

图2 在干燥空气中对金属锂/钠的微米级别界面表征

图3 理论模拟辅助理解锂/钠-干燥空气反应机制

图4 CO2预钝化技术实现耐腐蚀的金属钠负极

关键词:

下一篇:天天热文:我国科学家实现千公里无中继光纤量子密钥分发
上一篇:最后一页