(资料图片仅供参考)
近日,中国科学院大连化学物理研究所催化基础国家重点实验室理论催化创新特区研究组研究员肖建平团队在氮氧化物(NOx)转化研究方面取得进展,揭示了过渡金属电催化脱硝的机理限制并强调了合成氨的重要性。
NOx的处理是重要的环境问题,也是实现高效二氧化碳电还原(eCO2RR)的必要前提。科研团队在前期的工作中开发了基于图论的反应网络研究新型算法(ACS Catal.,2021),应用这个算法开展了一氧化氮电还原的研究,提出了合成氨的新线路(Angew. Chem. Int. Ed.,2020),并持续在该方向上开展了多维度的研究(J. Phys. Chem. Lett.,2021;ACS Sustain. Chem. Eng,2022;J. Phys. Chem. Lett.,2022)。系列成果在该团队关于反向人工氮循环的综述文章中进行了详细阐述(ChemPlusChem,2021;Curr. Opin. Electroche.,2023)。
科研团队探索了脱除NOx的另一条重要路线,将NOx转化为环境友好的N2,即直接电催化脱硝。该工作使用反应相图来分析系列金属催化剂上反应机理的演变,并以Pd和Cu为例,研究了电势和pH效应。综合理论分析和实验结果发现,在所有金属上N2都是通过N2O*进一步转化生成的,且与N2O相比,N2选择性较低。该研究还揭示了低N2选择性的起源。一方面,从能量的角度来看,所有金属表面反应性对N2的产生非常不利。金属表面对N2OH*的吸附始终太弱,抑制了N2O*质子化活性。此外,O*和OH*吸附能之间的强关联性使得强反应性金属表面上的活性位点被O*/OH*毒化,或导致N2O*在吸附较弱的金属上很难解离。这两种性质协同使所有金属对N2O更具选择性。研究发现,相比于N*-NO偶联,N*质子化使Cu表现出高NH3选择性。另一方面,电位、pH和NO分压等实验条件的优化可略微提高N2的选择性,但不足以超过N2O或NH3。对NO电催化还原中低N2选择性的深入理解可作为未来催化剂设计的提供参考。更重要的是,氨合成的特殊活性为建立反向人工氮循环提供了一条可行的途径,可在非集成式氨合成中发挥关键作用。基于上述研究,科研团队建议未来可探索设计能打破金属催化剂“构效关系”的新催化剂,或发展非集成氨合成的新路线。
相关研究成果以Steering from electrochemical denitrification to ammonia synthesis为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、榆林创新院人工智能科技专项、中科院洁净能源创新研究院合作基金等的支持。
论文链接
大连化物所证明了从电催化脱硝转向合成氨过程的必要性