(资料图片)
脊髓损伤(SCI)发生后,因损伤微环境的动态和复杂性,导致受损部位神经存活和组织再生困难。其中,氧化应激和炎症形成多个正反馈调节信号网络,在损伤后占主导地位,成为外在神经损伤环境的标志。SCI通过各种细胞和酶介导的信号通路产生活性氧(ROS)。高水平的ROS易引起氧化应激,通过多种机制导致炎症事件,例如,介导炎症小体激活、靶向IκB的降解,以及促进NF-κB向细胞核的易位并激活炎症。伴随免疫细胞,特别是巨噬细胞的持续存在,通过释放肿瘤坏死因子(TNF)并诱导线粒体产生ROS。同时,这也导致免疫细胞通过上调活性氮,NADPH氧化酶和其他酶的表达来分泌更多的ROS。因此,单一清除活性氧或抑制炎症的策略治疗SCI效果有限。
中国科学院苏州纳米技术与纳米仿生研究所戴建武、陈艳艳再生医学团队设计了一种与“花粉”IRF-5SiRNA结合“纳米花”Mn3O4的集成纳米酶,为在脊髓损伤后抗氧化和抗炎的组合治疗策略提供了新思路。该策略通过价工程纳米酶Mn3O4模仿抗氧化酶的级联反应,展现出比天然抗氧化酶更高的底物亲和力和更高的最大反应速率,可以有效催化ROS产生氧气,降低氧化应激,持续氧合促进血管生成。同时“花粉”IRF-5SiRNA 通过降低干扰素调节因子5(IRF-5)的表达实现炎症巨噬细胞表型逆转。中性粒细胞膜包覆集成纳米酶,进一步保护和靶向递送“花粉”IRF-5SiRNA至炎症巨噬细胞中,有效降低了炎症细胞的浸润,从而减少了神经瘢痕形成。在完全性脊髓损伤的大鼠模型中,多功能纳米酶增强了各种神经元亚型(运动神经元、中间神经元和感觉神经元)的再生和后肢运动功能的恢复。该工作为治疗脊髓损伤提供了新思路和新手段。
相关研究成果以Multifunctional Integrated Nanozymes Facilitate Spinal Cord Regeneration by Remodeling the Extrinsic Neural Environment为题,发表在AdvancedScience上。研究工作得到国家自然科学基金重大项目、国家重点研发计划、中科院战略性先导科技专项的支持。
论文链接
图1.方案示意图。A、IRF-5集成纳米酶的合成示意图;B、制备的多功能纳米酶的发挥治疗能力的示意图,主要包括巨噬细胞重编程和氧化还原调节;C、图表显示SiRNA/M@pMnIRF-5受到招募因子SiRNA/M@pMn驱动靶向炎性巨噬细胞的募集过程。
图2.制备和表征IRF-5RNA/M@pMn.(A、B)SEM,(C)SAED 模式的TEM,(D)TEM和(E、F)HAADF-STEM图像。(G)IRF-5siRNA纳米颗粒的示意图。(H)使用琼脂糖凝胶电泳测定siRNA与纳米载体结合能力。(I)IRF-5RNA/M@pMn的透射电镜图像。(J)Mn3O4、pMn 和M@pMn纳米颗粒的傅里叶变换红外光谱。(K)HL-60和诱导的中性粒细胞中膜蛋白表达的热图。(L)M@pMn中CXCR1/2的蛋白质印迹图。图像中的三个泳道反映了三次重复实验。(M)CXCR1/2和CXCL1/2/3之间蛋白质对接的蛋白对接模拟图。(N)不同纳米颗粒的粒径和(O)zeta电位(n = 3)。
图3.功能性水凝胶在长期动物实验中诱导运动功能恢复。(A)大鼠从手术后第八周的BBB分数(n = 8)。(B)使用典型足迹印记(前爪,蓝色墨水;后爪,红色墨水)检查大鼠后肢运动功能恢复情况。(C)SCI 修复后的代表性脊髓解剖图像。(D)ChAT、Calbindin和Brn3a染色后的代表性免疫荧光图像以及(E)ChAT、(F)Calbindin和(G)Brn3a染色(n = 6)的定量分析。(H)Tuj1、(I)Map2、(L)CS56、(N)CD31的神经元分化图及其对应的(J)、(K)、(M)、(O),定量分析(n = 3)。(P)神经元和血管等标志物表达的qPCR分析(n = 5)。