【资料图】
Z-烯烃片段广泛存在于天然产物和药物分子中。由于大位阻取代基位于双键同侧,Z-烯烃相对于E-烯烃热力学不稳定,因而其高选择性合成颇具挑战性。过渡金属催化的不对称烯丙基取代反应利用亲核试剂捕获π-烯丙基金属配合物中间体,可以高效构建含有烯烃片段的手性化合物,但该类反应一般经历热力学稳定的syn-π-烯丙基金属配合物,得到末端烯烃或者E-烯烃产物。 2021年,中国科学院上海有机化学研究所游书力研究团队利用“活泼前手性亲核试剂捕获亚稳态anti-π-烯丙基金属配合物”的策略,实现了铱催化Z式保留不对称烯丙基取代反应,高效地构建了一系列含有Z-烯烃片段的复杂手性分子(图1,Science2021, 371, 380;J. Am. Chem. Soc.2022, 144, 4770.)。在这类反应中,anti-π-烯丙基铱配合物一般被推测为关键的催化活性中间体,对其分离、表征及性质研究具有重要意义。然而,该中间体热力学不稳定,易通过π-σ-π异构化过程转化为热力学稳定的syn-π-烯丙基铱配合物,故其分离表征颇具挑战性。 前期研究通过核磁共振磷谱(31P NMR)和高分辨质谱(HRMS)对一类手性磷/烯烃配体衍生的anti-π-烯丙基铱配合物(三氟甲磺酸根为抗衡阴离子)的生成以及异构化过程进行表征,但未能实现该配合物的分离鉴定。近日,科研人员通过向体系中引入强配位的卤离子,提升了anti-π-烯丙基铱配合物的稳定性,实现了一系列anti-π-烯丙基铱配合物的合成,并通过单晶X射线衍射确证了其结构(图2)。同时,核磁共振磷谱表征了anti-π-烯丙基铱配合物向热力学稳定的syn-π-烯丙基铱配合物的异构化过程,并证实了异构化所需的时间长于亲核进攻。这是实现Z式保留的不对称烯丙基取代反应的关键因素。 该类anti-π-烯丙基铱配合物可以高效催化一系列吲哚-2-酮衍生的前手性亲核试剂与Z-烯丙基碳酸酯的Z式保留的不对称烯丙基取代反应(图3)。研究发现,使用预先制备的铱配合物能取得与原位生成的铱催化剂相当的收率(81~97%)和选择性(L/B > 19/1,Z/E >19/1,90-94% ee),并将反应时间从2小时到1天,缩短为5分钟到1小时。 该研究通过分析anti-π-烯丙基铱配合物([Ir]/L = 1:1)的几何和电子结构揭示了反应区域选择性的成因(图4)。由于磷配体并不处于烯丙基任何一端(C1和C3)的反位,使得C1–Ir键和C3–Ir键的键长以及Mayer键级基本相同,因此亲核试剂优先进攻位阻较小的C1位。这与文献报道的由同类手性配体衍生的铱配合物([Ir]/L = 1:2)明显不同。研究进一步使用DFT计算考察了吲哚-2-酮负离子进攻anti-π-烯丙基铱配合物的过渡态,提出了该反应的手性控制模型。 该工作报道了Z式保留不对称烯丙基取代反应中关键的anti-π-烯丙基铱配合物中间体的合成、分离与表征,并探索了其形成、异构化和与亲核试剂反应的机制。在此基础上,研究发展了一类新型的Z式保留不对称烯丙基取代反应,提出了反应区域选择性成因和手性诱导模型。相关研究成果以全文形式在线发表在Nature Catalysis(DOI:10.1038/s41929-022-00879-z)上。这一成果为进一步发展Z式保留不对称烯丙基取代反应、合成手性Z-烯烃奠定了坚实基础。研究工作得到科技部、国家自然科学基金、中国院、上海市科学技术委员会等的支持。图1.铱催化Z式保留不对称烯丙基取代反应图2.anti-π-烯丙基铱配合物的合成及表征图3.铱催化吲哚-2-酮衍生物参与的Z式保留不对称烯丙基取代反应图4.铱催化Z式保留不对称烯丙基取代反应的区域/对映选择性模型